Gabriel Lipkowitz PhD Student at Stanford University

My name is Gabriel Lipkowitz. I am currently a PhD candidate in Mechanical Engineering at Stanford University advised by Eric Shaqfeh and Joseph DeSimone. My research focuses on combining novel additive manufacturing processes and generative design methodologies. If you’d like to learn more about my most recent work, feel free to read about the recently introduced injection continuous liquid interface production (iCLIP) method below.

Home

Highlighted Research

Injection continuous liquid interface production of 3D objects

Gabriel Lipkowitz, Tim Samuelsen, Kaiwen Hsiao, Brian Lee, Maria T. Dulay, Ian Coates, Harrison Lin, William Pan, Geoffrey Toth, Lee Tate, Eric S. G. Shaqfeh, Joseph M. DeSimone

In additive manufacturing, it is imperative to increase print speeds, use higher-viscosity resins, and print with multiple different resins simultaneously. To this end, we introduce a previously unexplored ultraviolet-based photopolymerization three-dimensional printing process. The method exploits a continuous liquid interface—the dead zone—mechanically fed with resin at elevated pressures through microfluidic channels dynamically created and integral to the growing part. Through this mass transport control, injection continuous liquid interface production, or iCLIP, can accelerate printing speeds to 5- to 10-fold over current methods such as CLIP, can use resins an order of magnitude more viscous than CLIP, and can readily pattern a single heterogeneous object with different resins in all Cartesian coordinates. We characterize the process parameters governing iCLIP and demonstrate use cases for rapidly printing carbon nanotube–filled composites, multimaterial features with length scales spanning several orders of magnitude, and lattices with tunable moduli and energy absorption. iCLIP enables rapid creation of 3D complex objects with high-viscosity composite resins and multiple materials simultaneously.

[📹 Video]

Publications

Computational Design & Fabrication

Lipkowitz, Gabriel, Eric Shaqfeh, and Joseph Desimone. "Paraflow: A Computational Design Tool for Support-free Multimaterial 3D Printing." Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. 2023.

Lipkowitz, G., Shaqfeh, E., & DeSimone, J. (2022, October). Generative co-design for microfluidics-accelerated 3D printing. In Proceedings of the 7th Annual ACM Symposium on Computational Fabrication (pp. 1-3).

Gabriel Lipkowitz, Tim Samuelsen, Kaiwen Hsiao, Brian Lee, Maria T. Dulay, Ian Coates, Harrison Lin, William Pan, Geoffrey Toth, Lee Tate, Eric S. G. Shaqfeh, & Joseph M. DeSimone (2022). Injection continuous liquid interface production of 3D objects. Science Advances, 8(39).

Lipkowitz, G., Samuelsen, T., Hsiao, K., Dulay, M. T., Coates, I., Pan, W., ... & DeSimone, J. M. (2022). Digital Microfluidic Design for Injection Continuous Liquid Interface Production of 3D Objects. In 2022 International Solid Freeform Fabrication Symposium.

Hsiao, K., Lee, B. J., Samuelsen, T., Lipkowitz, G., Kronenfeld, J. M., Ilyn, D., ... & DeSimone, J. M. (2022). Single-digit-micrometer-resolution continuous liquid interface production. Science Advances, 8(46).

Abstract: Lipkowitz, Gabriel, Eric Shaqfeh, and Joseph DeSimone. "Generative co-design for microfluidics-accelerated 3D printing." Symposium on Computational Fabrication. 2022.

Abstract: Gabriel Lipkowitz, Tim Samuelsen, Kaiwen Hsiao, Maria T. Dulay, Ian Coates, William Pan, Eric S.G. Shaqfeh, Joseph M. DeSimone . "Digital microfluidic design for injection continuous liquid interface production of 3D objects." Solid Freeform Fabrication. 2022.

Lee BJ, Hsiao K, Lipkowitz G, Samuelsen T, Tate L, DeSimone JM. "Characterization of a 30 µm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization." Addit Manuf. 2022 Jul.

Lipkowitz, G. Hennum, K.S. Piva, E. and Schofield, E. (2021) “Numerical Modelling of moisture loss during controlled drying of marine archaeological wood” Forests 2021, 12(12), 1662

Biodesign

Winer, B.Y., Huang, T.S., Pludwinski, E., Wojcik, F. Lipkowitz, G. , Parekh, A., Cho, C., Shrirao, A., Muir, T., Novik, E., Ploss, A. (2017) “Long-term persistent hepatitis B virus infection in a scalable micro-well primary hepatocyte coculture system” Nature Communications, 8:125.

Magoro, T. Dandekar, A., Jennelle, L. Bajaj, R. Lipkowitz, G. Angelucci, A. Bessong, P. and Hahn, Y. (2019) “IL-1β/TNF-α/IL-6 inflammatory cytokines promote STAT1-dependent induction of CH25H in zika virus-infected human macrophages” J. Biol. Chem.

Winer, B.Y. Gaska, J. Lipkowitz, G. Bram, Y. Parekh, A. Parsons, L. Leach, R. Jindal, R. Cho, C. Shrirao, A. Novik, E. Schwartz, R. Ploss, A. (2019) “Transcriptomic analysis of acute and chronic HBV and HBV/HDV co-infections in self-assembling primary human hepatocyte co-cultures” Hepatology.

Winer, B.Y. Parekh, A. Heller, B. Lipkowitz, G. Guo, R. Cho, C. Shrirao, A. Pludwinski, E. Novik, E. Ploss, A. (2018) “Persistent Hepatitis B virus infection in self-assembling microscale primary hepatocyte co-culture” Drug Metabolism and Pharmacokinetics.

Twitter